Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Arch Razi Inst ; 76(3): 453-459, 2021.
Article in English | MEDLINE | ID: covidwho-1498236

ABSTRACT

More than a decade ago, a novel coronavirus that infects humans, bats, and certain other mammals termed severe acute respiratory syndrome coronavirus (SARS-CoV) caused an epidemic with ~ 10% case fatality, creating global panic and economic damage. Recently, another strain of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused an infectious disease (COVID-19) in humans which was detected for the first time in Wuhan, China. Presently, there is no specific therapy available for the treatment of COVID-19. However, social distancing, patient isolation, and supportive medical care make up the current management for this current infectious disease pandemic. The present in silico study evaluated the binding affinities of some natural products (resveratrol, xylopic acid, ellagic acid, kaempferol, and quercetin) to human angiotensin-converting enzyme 2 and coronavirus (SARS-CoV-2) main protease compared to chloroquine, an inhibitor known to prevent cellular entry and replication of the coronavirus. The respective binding energies of the selected natural compounds and chloroquine towards the proteins were computed using PyRx virtual screening tool. The pharmacodynamic and pharmacokinetic attributes of the selected compounds were predicted using admetSAR. Molecular docking analysis showed that the natural compounds had better scores towards the selected protein compared to chloroquine with polar amino acid residues present at the binding sites. The predicted ADMET properties revealed the lower acute oral toxicity of the natural products compared to chloroquine. The study provides evidence suggesting that the relatively less toxic compounds from the natural sources could be repositioned as anti-viral agents to prevent the entry and replication of SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Molecular Docking Simulation , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19/virology , Glycoproteins , Humans , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL